Publications

Here is a selection of publications where different laminin isoforms were used to create more authentic cell culture systems.

  • Sort by

  • Area of interest

  • Protocol for the derivation, culturing, and differentiation of human iPS-cell-derived neuroepithelial stem cells to study neural differentiation in vitro

    Javier Calvo-Garrido, Dania Winn, Camilla Maffezzini, Anna Wedell, Christoph Freyer, Anna Falk, Anna Wredenberg. STAR Protocols, 2021

    This protocol describes the derivation of neuroepithelial stem (NES) cells from human induced pluripotent stem cells. NES cells can be further differentiated into neurons and glia. The PSC culture and NES differentiation were done on plates coated with Biolaminin 521 (laminin-521). To avoid clonal selection of isolated NES cells, it is recommended to follow the culture conditions described. The protocol is expected to result in highly proliferate NES cells providing a good source of cells of a neuronal cell lineage. Glial cells are formed after approximately 45 days of differentiation.

  • CRISPRi-mediated transcriptional silencing in iPSCs for the study of human brain development

    Pia Annette Johansson, Anita Adami, Johan Jakobsson. STAR Protocols, 2022

    This protocol describes using CRISPRi-mediated transcriptional silencing in human induced pluripotent stem cells. In addition, it contains an efficient protocol for neural progenitor differentiation. The method is directly applicable to loss-of-function studies in brain development research. Biolaminin 521 (laminin-521) is applied as the cell culture matrix for PSCs and Biolaminin 111 (laminin-111) for hiPSC differentiation into forebrain neural progenitor cells. The protocol is expected to achieve high transduction and silencing efficiency. After two weeks of differentiation, the authors detected no reduction in the percentage of positive cells, and the cerebral organoids had stable transcriptional silencing even after 4 months.

  • Generation of a CHIP isogenic human iPSC-derived cortical neuron model for functional proteomics

    Catarina Dias, Erisa Nita. Jakub Faktor, Lenka Hernychova, Tilo Kunath, Kathryn L. Ball. STAR Protocols, 2022

    This protocol describes the production of gene-edited cells using CRISPR-Cas9 and a patient-derived induced pluripotent stem cell (iPSC) line. Biolaminin 521 was used as the matrix to improve single cell survival and pluripotency. The resulting panel of iPSC lines was differentiated into cortical neurons with the Biolaminin 111 culture matrix. The overall aim was to identify protein and pathway targets for the neuroprotective E3-ubiquitin ligase CHIP, which is important in healthy brain aging. The protocol can be adapted to other proteins and pluripotent stem cell lines.

  • Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain

    Jinxiang Dai, Patrick J. Cimino, Kenneth H. Gouin III, Candice A. Grzelak, Alexander Barrett, Andrea R. Lim, Annalyssa Long, Stephanie Weaver, Lindsey T. Saldin, Aiyedun Uzamere, Vera Schulte, Nigel Clegg, Laura Pisarsky, David Lyden, Mina J. Bissell, Simon Knott, Alana L. Welm, Jason H. Bielas, Kirk C. Hansen, Frank Winkler, Eric C. Holland and Cyrus M. Ghajar. Nature Cancer, 2022

    This study shows that astrocyte-deposited laminin-211 drives disseminated tumor cell (DTC) quiescence in brain metastases by inducing the dystroglycan receptor. Dormancy has a key role in the metastasis of breast cancer cells to the brain. The authors compared the laminin 211 isoform with laminin 411, 511, and 111, and only 211 significantly and substantially reduced breast cancer cell outgrowth in addback experiments.

  • Laminin 511 and WNT signalling sustain prolonged expansion of hiPSC-derived hippocampal progenitors

    Keagan Dunville, Fabrizio Tonelli, Elena Novelli, Azzurra Codino, Verediana Massa, Anna Maria Frontino, Silvia Galfrè, Francesca Biondi, Stefano Gustincich, Matteo Caleo , Luca Pandolfini, Claudia Alia, and Federico Cremisi. Development, 2022

    The authors identify laminin-511 as a crucial laminin isoform for prolonging the neural stem cell (NSC) state and extending hippocampal NSC proliferation for over 200 days in vitro. Biolaminin 511 supported adhesion and cell cycle progression of the dividing hippocampal progenitors. LN511 was crucial in supporting progenitor proliferation, inhibiting differentiation, and sustaining a gene expression profile responsible for maintaining a hippocampal neurogenic niche for extended periods compared with isoforms LN121, LN332, LN441, and with a mouse laminin product. The study involved a novel protocol for differentiating hippocampal NPCs from human induced pluripotent stem cells via a WNT actuator. The differentiation capability of both young and older NPC populations was retained when tested by xenografting into mice.

  • Enhanced xeno-free differentiation of hiPSC-derived astroglia applied in a blood–brain barrier model

    Louise Delsing, Therése Kallur, Henrik Zetterberg, Ryan Hicks, Jane Synnergren. Fluids Barriers CNS, 2019

    This study shows that astroglia cells differentiated on Biolaminin 521 display an improved phenotype compared to a mouse EHS-extracted laminin L2020 product. Especially, cells differentiated on Biolaminin 521 had a higher secretion of factors important for BBB formation, such as GFAP, S100B, and Angiopoietin-1, than cells differentiated on the laminin extract. In addition, glutamate uptake and the ability to induce the expression of junction proteins in endothelial cells were affected by the culture matrix choice. The study showed differentiation of functional astroglia from three different human induced pluripotent stem cell lines which were used in a blood-brain barrier model.

  • Human iPS-Derived Astroglia from a Stable Neural Precursor State Show Improved Functionality Compared with Conventional Astrocytic Models

    Anders Lundin, Louise Delsing, Maryam Clausen, Piero Ricchiuto, José Sanchez, Alan Sabirsh, Mei Ding, Jane Synnergren, Henrik Zetterberg, Gabriella Brolén, Ryan Hicks, Anna Herland, and Anna Falk Stem Cell Reports, 2018

    This study reports the differentiation of human induced pluripotent stem cell (hiPSC)-derived astroglia cells under defined conditions using Biolaminin 521 as the matrix.

  • Publication: Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex

    Güven A et al. 2020 eLife

    Laminin-211 (LN211) is shown to increase basal progenitor cell proliferation in the mouse neocortex.

  • Publication: Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids

    Fiorenzano et al. 2021 Nature Communications

    Biosilk 3D scaffold biofunctionalized with Biolaminin 111 was used to generate mature and functional ventral midbrain (VM) organoids with less variation both between the organoid replicates and within an organoid, when compared with a standard VM-organoid method. This study shows the benefits of Biosilk especially in terms of permeability (no necrotic centers), resulting in improved cell maturity and experimental reproducibility. Biosilk can be supplemented with any Biolaminin isoforms, depending on the tissue type of interest.

  • A Hydrogel Platform that Incorporates Laminin Isoforms for Efficient Presentation of Growth Factors – Neural Growth and Osteogenesis

    Oana Dobre, Mariana A. G. Oliva, Giuseppe Ciccone, Sara Trujillo, Aleixandre Rodrigo-Navarro, Douglas Cormac Venters, Virginia Llopis-Hernandez, Massimo Vassalli, Cristina Gonzalez-Garcia, Matthew J. Dalby, Manuel Salmeron-Sanchez. Advanced Functional Materials, 2021

    The authors report a 3D culture system with a defined matrix composition that reflects the complexity of the native ECM, where growth factors in combination with Biolaminin isoforms give more natural cellular processes. The authors incorporated the full-length Biolaminin 521, 332, and 411 proteins into a synthetic polymer network with controlled physico-chemical properties, and showed examples of hMSC osteogenesis and neurite growth in this 3D microenvironment.